
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1986

Analysis of a GPS aided inertial navigation system
using the delayed state Kalman filter
Paul William McBurney
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering
Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
McBurney, Paul William, "Analysis of a GPS aided inertial navigation system using the delayed state Kalman filter" (1986).
Retrospective Theses and Dissertations. 17295.
https://lib.dr.iastate.edu/rtd/17295

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F17295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F17295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F17295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F17295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F17295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F17295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Frtd%2F17295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Frtd%2F17295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Frtd%2F17295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/17295?utm_source=lib.dr.iastate.edu%2Frtd%2F17295&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Analysis of a GPS aided inertial navigation system 

using the delayed state Kalman filter 

by 

Paul William McBurney 

A Thesis Submitted to the 

Graduate'Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

MASTER OF SCIENCE 

Department: Electrical Engineering and 
Computer Engineering 

Major: Electrical Engineering 

Signatures have been redacted for privacy 

Iowa State University 
Ames, Iowa 

1986 



www.manaraa.com

ii 

TABLE OF CONTENTS 

I. INTRODUCTION 

A. Review of Aided Inertial Navigation Systems 

B. GPS Summary 

C. Problem Definition 

II. KALMAN FILTER DESIGN 

A. Linearized Measurement Equations 

1. Aided inertial system block diagram 
2. Baseline model 
3. Delayed state model 
4. Velocity model 

B. Kalman Filter Modelling 

1. State equation 
2. Measurement equation 

C. Kalman Filter Recursive Equations 

D. Kalman Filter Error Analysis 

III. RESULTS 

A. Specification of Filter Parameters 

B. Program Results 

IV. CONCLUSION 

V. REFERENCES 

VI. ACKNOWLEDGMENTS 

VII. APPENDIX A. APPROXIMATION OF THE DELAYED STATE MODEL 

VIII. APPENDIX B. DERIVATION OF SATELLITE DIRECTION COSINES 

Page 

1 

1 

5 

8 

12 

12 

12 
13 
16 
18 

20 

20 
28 

31 

34 

38 

38 

42 

62 

66 

67 

68 

71 



www.manaraa.com

1 

I. INTRODUCTION 

A. Review of Aided Inertial Navigation Systems 

A stand-alone inertial navigation system (INS) uses gyroscopes for 

inertial stabilization and accelerometers to measure vehicle position 

and velocity with respect to a given reference. Because the gyroscopes 

tend to drift out of calibration, the accuracy of the system degrades 

with increasing time from reset. Aided navigation systems have been 

developed to provide an accurate reference so that the INS errors can be 

estimated. When the errors are found, an improved estimate of position 

and velocity can be obtained. The error estimates may also be used to 

reset the gyros after some specified time interval to keep the errors 

small. 

Many types of aiding sources and system structures have been 

developed since the early 1940s. These include airborne systems which 

receive aiding measurements from ground stations (LORAN) as well as 

marine-based systems which obtain aiding information from satellites 

(NAV-SAT). The Global Positioning System (GPS), a satellite network 

which is currently partially in place although not in full deployment, 

promises to be an excellent aiding source. GPS alone can provide dis­

crete estimates of a user's position, velocity, and time with respect to 

a specified coordinate frame and time reference. When the system is 

fully operational, at least four satellites will be "visible" on a 

nearly twenty-four hour basis anywhere on the near-earth. GPS aided 

inertial navigation systems are already available to civilian users. 
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They have been used with such success that they are called Highly Accu­

rate Inertial Navigation Systems (HAINS) [1]. 

In a typical feedforward complementary-type aided INS (see Figure 

2), a measured quantity from an aiding source is compared with the 

corresponding quantity computed using the inertial system's current 

position and/or velocity [2]. The difference is then related to the INS 

position and/or velocity errors and the aiding source errors. The best 

estimates of INS. position and velocity are obtained by first using the 

difference quantity to estimate the INS errors and then subtracting the 

errors from the INS estimates. An estimator is needed to separate out the 

INS and aiding source errors. The estimator does not operate on the 

total position and velocity quantities. They pass through the system 

until the estimated errors are subtracted out. 

The task of est~ating the INS errors is complicated by several 

factors. There are usually several measurements available which are 

related to the same quantities so that each measurement must be given 

its proper weight depending on the confidence in the measurement. There 

is also a considerable amount of measurement noise associated with the 

aiding source measurement. The gyro errors will be random in nature. 

It is clear that an optimal est~ator is needed to process the differ­

ence measurements and extract the best estimate of INS errors. 

The Kalman filter has proven to be the answer to the estimation 

problem. The error quantities become the state vector of the filter 

which is the random process to be estimated. To implement the Kalman 

filter, the dynamic properties of the state vector are modelled by 
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defining the process state equation, the input is modelled with the 

measurement equation, and the covariance structure of the noise in the 

process and measurement equations are defined. It is then a routine 

matter to obtain a set of recursive equations which will yield an 

optimal estimate of the current state of the random process based on a 

set of noisy measurements which are related to the current state. 

When GPS is used as an aiding source, there are generally eight 

measurements available within a certain time interval (two measurements 

from each of four satellites). These are the pseudo-range and range 

rate (also known as the delta-range) of the magnitude of the distance 

from the GPS receiver to the satellite. Since the satellite position 

is considered given, it is possible to calculate what the measurement 

should be using the INS current position and the given satellite 

position. This assumes, of course, that the positions can be brought 

into the same coordinate frame. The difference of the computed and 

measured quantities becomes the observable to the Kalman filter and 

will be the difference of the INS errors and the aiding source errors 

since the true values subtract out. 

The range rate measurement is actually the change of the GPS carrier 

phase over a specified small interval of time. This time interval is 

known as the delta-range integration interval. The range rate is 

proportional to the Doppler shift of the GPS carrier due to the relative 

motion between the receiver and the satellite. It is not physically 

possible to measure instantaneous frequency. It is safe to say that the 

real measurement is the average (integral) of the range rate over the 
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integration interval. Some aided inertial systems consider the measure­

ment to be a point measure of the range rate. Using this model, when 

the computed and measured range rate are compared the difference will be 

proportional to the INS velocity errors and the GPS clock fractional 

frequency error. However, to assume that instantaneous velocity 

measurements are observable is very optimistic and quite risky. But, 

this type of measurement model might be a fair approximation if the 

integration interval and the vehicle accelerations are very small. 

If the measurement equation is considered to be the integral of 

the computed Doppler shift less the measured Doppler shift over the time 

interval, the measurement can be shown to be proportional to the differ­

ence of the ranges evaluated at the endpoints of the interval and to the 

difference of the GPS clock offset errors at the endpoints of the 

interval. This is a much safer model because there is no problem assum­

ing instantaneous position measurements can be obtained. 

The only problem with this measurement model is that it does not 

fit the form of the usual Kalman filter measurement equation. The 

observable is related to the present as well as the past filter state. 

This problem can be alleviated by using the delayed state Kalman filter 

which has a measurement equation that allows for the current measure­

ment to be proportional to the current and previous state vectors. This 

filter will then allow for optimal processing of the delta-range 

measurements. This problem can also be seen as just a two point smooth­

ing problem. If desired, the delayed state Kalman filter could be 

generalized to include more states [3]. 



www.manaraa.com

5 

B. GPS Summary 

A brief summary of GPS and of the process used to detect and 

decode the satellite signals is helpful in describing the contribution 

GPS provides as an aiding source to an INS. When the system is fully 

operational, there will be eighteen satellites: three in each of six 

rings (plus three active spares) in non-synchronous orbits with one-

half day periods (see Figure 1). Their orbits are spaced so that at 

least four satellites will be observable at any time. Each satellite 

transmits two codes: the precision code which offers high precision 

but is reserved for military purposes, and the coarse/acquisition code 

(C/A code) which is available for civilian use [8, 9]. (Use of the CiA 

code will be assumed here although the P code would be used in much the 

same way.) 

r---~--~~--~--~----~---r----r----r----r----r---'r---,~ . 

Figure 1. GPS satellite configuration 



www.manaraa.com

6 

The phase of the GPS carrier as well as the information modulated 

onto the carrier is used in obtaining a navigation solution. Each 

satellite has a unique pseudo-random binary (+1, -1) sequence which 

modulates the phase of the carrier signal. A GPS receiver has each of 

the pseudo-random sequences as well as an almanac of the current satel­

lite constellation stored in memory. For a given GPS time and position, 

the GPS receiver can determine which satellites will be available, and 

of those, which will be in the best configuration to minimize Geometric 

Dilution of Precision (GDOP) [8, 9]. For each of the chosen satellites, 

the receiver generates the pseudo-random sequence and computes the cross­

correlation between the locally generated code and the received code. 

The receiver then shifts the locally generated code to match the incom­

ing code, and thus it measures range plus clock offset in this manner. 

The received signal will also be out of phase with the locally generated 

signal because of the signal propagation time and also because of the 

Doppler shift due to the relative motion between the satellite and the 

receiver. The receiver has to shift the phase of the locally generated 

signal to achieve maximum correlation between the received and local 

signal. If acceptable locking is achieved, the receiver can then decode 

the satellite message. This operation is performed with a Costas type 

phase lock loop. This message contains the timing and satellite posi­

tion data (plus many other blocks of data) needed when solving for 

receiver position, velocity and time. 

The code difference measurement is proportional to the signal 

propagation time and is used to find the pseudo-range from the receiver 
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to the satellite. This distance measurement is called a pseudo-range 

because it contains the effects of receiver and satellite clock errors 

as well as the desired propagation delay. The delta-range or range 

rate measurement is obtained by taking the difference of the predicted 

and measured phase shifts over some specified time interval and then 

dividing this by the time interval [6). The pseudo-range, the delta­

range, and the decoded satellite message from each of the four satellites 

are the contributions that GPS makes as the aiding source in an aided 

INS. 

The receiver clock offset and fractional frequency (the actual 

frequency offset divided by nominal frequency) errors are mainly a result 

of the desire to use less expensive clocks as compared with the highly. 

accurate and expensive satellite clocks. (The satellite clocks are still 

prone to the same types of errors but to less of an extent.) For this 

reason, the receiver clock errors are a much larger source of pseudo­

range error than the satellite clock errors. Also, the GPS ground 

control station can monitor satellite clock errors and determine correc­

tion factors (which are uploaded to the satellites and relayed in the 

satellite message) to adjust the time reference. The precise time 

standard plays a very important role in use of GPS. However, a GPS 

receiver must keep track of its own clock errors. This seemingly 

undesirable feature is resolved because it is possible to estimate the 

clock errors accurately. With four satellites in view, it is possible 

to generate four equations in four unknowns; that is, three-dimensional 

position and receiver clock offset. By solving these equations 
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simultaneously, the unknowns are determined. (This is in itself another 

Kalman filtering problem but need not be considered when GPS is used as 

an aiding source.) 

Thus, GPS by itself can be used to provide discrete position, 

velocity and time estimates. This research is only interested in using 

GPS as an aiding source to an INS. The joining together of the two 

systems brings together the best and suppresses the undesirable char­

acteristics of both systems. The navigation solutions supplied by GPS 

are highly accurate but only become available as fast as the receiver 

computer can solve the problem. There also may be problems with poor 

satellite geometry which may lead to dilution of precision or even 

singular (unsolvable) situations in the navigation solution. Total 

dependence on satellite navigation may be risky in military situations 

in the presence of signal jamming. The main advantage of the INS is 

that it offers fairly accurate continuous navigation information. The 

drawback is that the accuracy will decrease with time because of gyro 

and accelerometer drifts which introduce random position and velocity 

errors into the system. By using GPS as an aiding source, the errors 

can be estimated and the INS can be reset often enough to keep the 

errors small. The resetting problem will not be considered in this 

research. 

c. Problem Definition 

The purpose of this research will be to compare the relative 

accuracy of a GPS aided INS using the two different measurement models 
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for processing the range rate observables. Typically, the "best" system 

would be the one where the mean square values (the variances for zero 

mean processes) of the INS errors are the smallest. The error covari­

ance of the random process being estimated with the Kalman filter is 

updated at each point in time when a measurement is processed. The 

elements along the main diagonal of the error covariance matrix are 

the variances of each of the state variables. The updating of the 

error covariance does not depend on the actual measurements, so it is 

possible to calculate the error covariance over enough steps to determine 

the steady state standard deviation of the elements of the state vector. 

The model which assumes the delta-range observable is a point 

measure of relative velocity will be referred to as the velocity model. 

The delayed state model will represent the model that equates the delta­

range observable to the integral of relative velocity over the integra­

tion interval. The Kalman filter for the velocity model will yield 

overly optimistic error covariances because it is told that a valuable 

instantaneous velocity error is available. (This is the fault of the 

filter designer and not the Kalman filter.) For this reason, the 

"better" of the two models cannot be distinguished by finding the filter 

with the smallest standard deviation of the state variables as indicated 

by the calculated error covariance matrix. One could find the statisti­

cal properties of the state variables by using Monte Carlo type simula­

tion methods, but this would be doing things the hard way. The method 

used in this research is suboptimal gain substitution (also known as 

suboptimal error analysis). 
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The Kalman gain is the residual weighting matrix which minimizes 

the elements along the main diagonal of the error covariance matrix. 

By definition, cycling any other gains through the Kalman filter equa­

tions will result in larger main diagonal elements, which in this case 

corresponds to a larger variance for the INS and GPS errors. The degree 

of suboptimallity of the velocity model can be found by using the Kalman' 

gains from the velocity model as the gains in the delayed state model. 

The difference between the optimal and the suboptimal variances should 

increase as the delta-range integration interval is increased. However, 

as this time interval is decreased, the velocity model will become a 

better approximation of the delayed state model. This will be shown 

mathematically as well as experimentally. 

In order to perform the model comparison and gain substitution, 

both the velocity model and the delayed state model must have the same 

process model. The statistics of the noise which drives the state 

equations in both models will be the same. Also, the measurement equa­

tions will be scaled so that they are in the same units which will make 

the gain substitution easier. The measurement noise statistics will 

also be the same in both models. 

It should be noted that the RMS values of the system errors being 

estimated in this research do not represent the absolute accuracy of 

the "best" GPS aided INS. Instead, a simple model that is representa­

tive of a typical GPS aided INS will be used. Only the INS x,y,z posi­

tion and velocity errors and the GPS receiver clock offset and 

fractional frequency errors will be modelled as state variables. This 
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is justified since these represent the dominant system errors. In the 

Kalman filter, all process and measurement noises will be considered 

to be Gaussian and white. For simulating the satellite coordinates, 

a circular orbit will. be assumed. By knowing the satellite spacing, 

the inclination angles and the orbital period it is straightforward to 

determine the satellites that are visible at a specified earth location. 

These simplifications are justified because this research is directed 

only toward the relative accuracy between the systems, with all condi­

tions equal except for the measurement equations. 
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II. KALMAN FILTER DESIGN 

A. Linearized Measurement Equations 

1. Aided inertial system block diagram 

Figure 2 is the block diagram of the aided INS to be used for this 

study. The block labelled INS contains the gyros, accelerometers, and 

any other processors required to output the position and velocity of 

the vehicle in a given three-dimensional coordinate frame on a continu­

ous basis. The aiding source block receives and decodes the GPS 

signals. It will be assumed that within a certain time interval, four 

pseudo-range and four delta-range measurements and the needed timing 

and satellite position information are available at the output of this 

block. 

The difference operation shown is somewhat misleading in that this 

section of the system takes the difference between the measurement 

obtained with the aiding source (pseudo~range and delta-range) and the 

INS computed measurement, and not the actual position and velocity 

estimates as might be implied by the diagram. The computed pseudo-range 

is determined in this block using the current INS position, the satellite 

position, and the estimated clock offset. If the delayed state model is 

used, the computed delta-range is obtained here using the current and 

previous INS position estimates and the current and previous clock off­

set estimates. If the velocity model is used, the delta-range will be 

computed using the INS velocity and the estimated clock fractional 

frequency. The output of the block will be the eight-tuple which is the 
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difference of the INS computed and GPS measured quantities regardless of 

which measurement model is used. This will become the current input to 

the Kalman filter. 

The Kalman filter observables will be noisy measurements related to 

the INS errors and the receiver clock errors. The job of the Kalman 

filter is to use this measurement to estimate the INS errors. The 

Kalman filter output will be subtracted from the total INS position and 

velocity output to yield the improved estimates. The receiver clock 

error estimates are used to update the receiver time reference (even 

though this operation is not implied from the block diagram). The 

measurement equation of the Kalman filter will now be derived. 

Best 
estimate 
of vehicle 

INS True values + INS errors + pos., v el. 

(pos., vel., etc. ) - I' 

Best 
estimate s 
of INS 

Meas. errors - errors -Aiding + INS errors Kalman 
Source, filter -
GPS True values 

+ meas. errors 

Figure 2. Aided INS block diagram 

2. Baseline model 

The baseline measurement equation accounts for the four pseudo-

range measurements. The pseudo-range obtained from the code position 
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measurement is the true range plus the sum of the error due to the 

receiver clock offset and the measurement noise. The pseudo-range 

measurement at time tis: 

where 

Ptrue 

z(t) = Pt (t) + cT(t) + vet) rue 

true distance from vehicle to the satellite 

P = J(Xs/- x)2. + (Ys - y)2. + (zs - z)2 true 

x,y,z true position 

satellite coordinates 

c speed of light 

T(t) clock off set 

vet) measurement noise 

(1) 

The range equation is nonlinear and needs to be linearized to fit 

the Kalman filter measurement equation format. A more general form for 

the measurement is: 

z(t) = h(x,y,z,T,t) + vet) (2) 

It is possible to linearize the equation about a nominal trajectory 

that does not depend on the actual measurement sequence. This produces 

a linearized Kalman filter [3]. The true position and clock offset 

variables can be written as: 

x(t) = x*(t) + ~x(t) 
yet) = y*(t) + ~y(t) 

(3) 

(4a) 
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(4b) 

(5) 

The starred quantities are the approximate trajectories and the 

delta variables represent the errors between the true and the nominal 

trajectories. By using a Taylor series expansion about the nominal 

trajectory and retaining only first order terms, the linearized 

measurement equation has the following form: 

z(t) - h(x*,y*,z*,T*,t) = d(h) ~x(t) + d(h) ~y(t) + 
ax * ay * x=x y=y 

d(h) ~z(t) + a(h) ~T(t) + vet) 
az z=z* aT T=T* 

(6) 

z(t) - h(x*,y*,z*,T*,t) = (-l/p*)(x - x)~x(t) + (-l/p*)(y -yMy(t) 
s s 

+ (-l/p*)(z - z)~z(t) + c~T(t) + vet) 
s 

p * = J (x - x*) 2 + (y - y*) 2 + (z - z*) 2 
s s s 

(7) 

(8) 

The coefficients of the position errors in equation 7 are the 

cosines of the angles between the line-of-sight range vector and the 

x,y,z coordinate axes and are referred to as the direction cosines. 

The method for bringing the satellite and vehicle coordinates into the 

same coordinate frame and obtaining the direction cosines is given in 

Appendix B. Equation 7 can be rewritten as: 

* * * * z(t) - hex ,y ,z ,T ,t) = - cos e (t)~x(t) - cose (t)~y(t) xp yp 

- cos e (t)~y(t) + c~T(t) + vet) zp (9) 
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The measurement available to the Kalman filter is the difference of 

a measured quantity and a corresponding computed quantity. The 

linearized measurement model is the sum of a linear function of the 

error quantities and of the measurement noise. Equation 9 represents 

the baseline measurement model that the delta-range measurements will 

be appended onto. 

3. Delayed state model 

The Doppler shift of the GPS carrier is proportional to the relative 

velocity as shown in equation 10. 

. 
f = -(f /c)p 

o 0 
(10) 

where 

fd Doppler shift 

f transmitted carrier frequency 
o 

f received carrier frequency 
r 

p time derivative of p 

The GPS receiver measures the average of the Doppler shift by 

observing the phase change needed to keep the locally generated radio-

frequency signal in phase with the received signal over a certain small 

time interval. The true Doppler count measurement is the integral of 

the Doppler shift as shown in equation 11 and has units of cycles. 
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Equation 11 is a nonlinear function with respect to the vehicle 

coordinates. The expression can be linearized about a nominal trajectory 

using the same method described above to linearize the pseudo-range 

measurement. The general form of the measurement is the same as equa-

tion 2. The corresponding his: 

h(x,y,z,T,t) = -f /c[p(t ) - p(t 1)] o n n- (12) 

where· 

(13) 

Using equations 2-5, 12, and 13 and a Taylor series expansion of 

h(x,y,z,T,t) about a nominal trajectory, the difference between the 

measured and the nominal Doppler count, to a first order approximation, 

is given as: 

z - h(x*,y*,z*,T*,t) = -f /c[-cos e (t )t.x(t ) - cos e (t )t.y(t) o xp n n yp n 

- cos e (t )t.z(t) + ct.T(t ) + cos e (t l)t.x(t 1) zp n n xp n- n-

+ cos e (t l)t.y(t 1) + cos e (t l)t.z(t 1) yp n- n- zp n- n-

- ct.T(t
n

_l )] + v(t) (14) 

Equation 14 is not in the usual form for the Kalman filter measure-

ment equation. The reason is that the measurement is related to the 

past, as well as present error quantities. The usual Kalman filter 

equation only allows for connections of the current measurement to the 

current state. This is not an unsurmountable problem, though. The 
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delayed state Kalman filter has been developed to handle this type of 

measurement situation. It is a routine task to develop the correspond-

ing delayed state Kalman filter recursive equations [3]. 

4. Velocity model 

In the velocity model, the Doppler shift measurement is considered 

to be proportional to the instantaneous relative velocity between the 

vehicle and the satellite. Equation 10 gives the relationship between 

the true Doppler shift and the relative velocity. 

Using the formula for the pseudo-range given in equation 1 (less 

the measurement noise), the time derivative of the pseudo-range is given 

as: 

. 
-(l/p)(x - x)x - (l/p)(y - y)y - (l/p)(z - z)z + cT s s s (15) 

where 

x,y,z vehicle velocity in the x,y,z directions 

t receiver clock fractional frequency 

The p equation is nonlinear in the vehicle coordinates. The equa-

tion may be put in the following general form: 

. 
z = h(x,y,z,x,y,z,T,t) + v(t) 

h -f /cp 
o 

(16) 

(17) 

The velocity coordinates can be defined in terms of the nominal 

velocity trajectories and the velocity errors as: 
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D.Z 
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(18) 

(19) 

(20) 

Using a Taylor series expansion of h about the nominal trajectory and 

neglecting terms higher than first order, equation 16 can be rewritten 

as: 

( * * *.*.*.*.* = a(h) AX + a(h) A z-hx,y,z,x,y,z,T,t) a U uy 
x * ay * x=x y=y 

+ a (h) D.z + a (.h) 6x + a (.h) 6y + a(.h) 6z 
az * ax •• * ay •• * az •• * z=z x=x y=y z=z 

(21) 

The first three terms on the right hand side of equation 21 can be 

neglected because these terms turn out to be many orders of magnitude 

less than the other terms in this expression. This result may not be 

true in general but in this case the assumption is valid because of the 

large GPS orbital radius. If the required partial derivatives are 

performed and the terms proportional to the position errors are 

neglected, equation 21 becomes: 

() ( * * *.*.*.*.*) / zt - h x ,y ,z ,x ,y ,z ,T ,t = -f c[-cose (t )6x(t) o xp n 

- cose (t)6y(t) - cose (t)6z(t) + c6T(t)] + v(t) (22) 
yp zp 

The linearized measurement model is the difference of the receiver 
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Doppler shift measurement and the predicted Doppler shift computed along 

the nominal trajectory. The model was derived on the assumption that 

the receiver can make an instantaneous relative velocity measurement, 

which is physically impossible. Therefore, this is a fictitious model. 

However, in the limit as the delta-range integration interval goes to 

zero, the form of the delayed state model (which is the legitimate model) 

approaches the form of the velocity model. This is shown in Appendix A. 

B. Kalman Filter ~Iodelling 

1. State equation 

It is clear that the vehicle position and velocity errors and the 

GPS receiver clock offset and fractional frequency errors are the random 

variables that need to be estimated from the linearized measurements 

discussed above. These eight random variables will be the state vari­

ables in the Kalman filter. The job of the Kalman filter is to accept 

the linearized measurements and provide the best estimate of the state 

variables based on the known statistical properties of the measurement 

noise and the noise that drives the random process. The process equa­

tion of the Kalman filter defines the dynamic properties of the state 

variables when they are driven by Gaussian white noise. Once the 

process and measurement equations and the corresponding noise statistics 

are defined, the modelling is complete and the required Kalman filter 

parameters may be found. The process equation will be considered next. 

Typically, position and velocity in a single direction are obtained 

by integrating the output of an accelerometer as shown in figure 3. The 
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output of the accelerometer will be the true acceleration plus additive 

noise. The output of the first integrator will be the true velocity 

plus the velocity error due to the random accelerometer error. The 

output of the second integrator is the sum of the true position plus 

a position error which is the result of the propagation of the 

accelerometer noise through the system. The model used for the error 

propagation will be the double integrator plant shown in Figure 4. The 

input will be assumed to be Gaussian white noise. The same model will 

be used to define the error propagation in the x, y, and z directions. 

The state variable assignments are as follows: 

Xl = ~x X position error 

x2 = ~x x velocity error 

x3 = ~y y position error 

(23) 

x4 = ~y y velocity error 

Xs = ~z z position error 

x6 = ~z z velocity error 

The plant equations for the given state variable assignments are: 

xl = x2 x2 = fl(t) 

x3 
. = f 2(t) (24) = x4 , x4 

Xs = x6 , x6 = f 3 (t) 



www.manaraa.com

x + instrument 
error 1 

22 

* + vel. 
error 1 

x + pOSe 
error 

Accelerometerr-------------~~ s r-------~ s r-------~~ 

Figure 3. Instrumentation error propagation 

f(t) 

~m 6* 

~ 
6x 

White noise x-vel. ~ X-pOSe 
driving error error 
function (m/s) (m) 

Figure 4. State variable dynamics in the x-direction 

The position errors have units of meters and the velocity errors 

have units of meters per second. The velocity errors are modelled as 

a Wiener process (integrated Gaussian white noise). This allows for 

random walk of the velocity errors. The velocity and position errors 

will be Gaussian, zero mean, nonstationary, random processes. 

The accuracy of GPS is highly dependent on a precise time reference 

for such things as time tagging the satellite transmissions and mea sur-

ing pseudo-range. For economic reasons, commercial receivers cannot 

rely on highly stable clocks as the satellites do. Instead, the 

receiver keeps track of the offset and fractional frequency of its own 

clock so that the receiver can compensate for the mild instability. 

For example, the computed pseudo-range uses the best available measure-

ment of the clock offset to compare with the measured pseudo-range 

which is affected by the true clock offset. Suppose that the current 
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position was known perfectly, then the linearized pseudo-range would 

only be the sum of the range errors due to clock offset error and the 

measurement noise. The clock error could be estimated and used to 

correct the current estimate of the clock offset. This is analogous 

to keeping track of time with a watch that runs fast by keeping track 

of the offset. If an accurate reference is available, the offset 

estimate may be improved and the correct time is found by subtracting out 

the best estimate of the offset. 

There has been a considerable amount of research done on the 

modelling of clock noise and its statistical properties (the so-called 

Allan variances) [10]. The single-sided power spectral density function 

of fractional frequency fluctuations is modelled empirically with a 

polynomial that contains powers of the independent variable (frequency) 

as shown in equation 25. 

where 

S(f) (25) 

h_2 = random walk frequency noise 

h_l = flicker frequency noise 

hO = white frequency noise 

hI = flicker phase noise 

h2 = white phase noise 

Each of the coefficients represents a different type of clock 

error. For high precision systems, effects of flicker noise must be 

modelled. However, this leads to a spectral density function with 
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terms that are not a function of frequency squared. If spectral 

factorization is performed, the resulting functions cannot be put in 

state space form in an exact manner (that is without adding extra 

state variables to approximate the true function). There has been an 

expressed desire to use only a second order model for the clock error. 

Since the other more advanced models are approximations, it is justified 

to use the second order model approximation which does account for the 

clock offset error and the clock fractional frequency error which are 

much more crucial than the flicker noise error. Thus, only the hO and 

h_2 terms will be included. A covariance model which includes the h_2 , 

h_l , and hO parameters has been derived [10]. The model used in this 

research will take advantage of this model except that the effects of 

the flicker noise will be neglected. The model used is the double 

integrator plant where there are white noise inputs into both 

integrators and will lead to the desired covariance model when the 

flicker noise is not included. (There are many subtleties involved in 

the covariance expression derivation, but they need not be dealt with 

here.) The clock offset. error is random walk plus integrated random 

walk and the clock fractional frequency error is also random walk as 

shown in Figure 5. Once again, the output of the integrators are the 

state variables and are defined below. 

clock offset error 
(26) 

clock frequency fluctuation error 
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has units of seconds 

has units of seconds/seconds or fractional frequency 

White noise 
driving functions fS(t) 

. 
I 

tiT 

s + 
fractional 
frequency 
error 
(seconds/ 
seconds) 

I 
tiT 

offset 
error 
(seconds) 

Figure 5. Clock error propagation model 

The following equations describe the plant for the state variable 

assignments of equation 26. 

(27) 

Since this research is concerned with relative accuracy between 

measurement models, this model is adequate because it contains the 

clock error state required in both models and the relationship between 

the two clock error state variables. 

The continuous state equation for the state variable assignments 

given in equations 24 and 27 has the following form: 

x(t) = F(t)x(t) + G(t)w(t) (28) 

where x(t) (nxl) process state vector 
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F(t) (rum) matrix 

G(t) (nxp) input distribution matrix 

wet) (pxl) white noise input vector 

0 I 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 I 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 fl(t) 

0 0 0 0 0 0 0 0 0 1 0 0 0 f 2 (t) 
F(t) , G(t) = , wet) 

f3 (t) 
(29) 

0 0 0 0 0 I 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 f4 (t) 

0 0 0 0 0 0 0 I 0 0 0 0 I fS(t) 

0 0 0 0 0 0 0 0 0 0 0 I 0 

Since the aiding source measurements are available only in dis-

crete time, the corresponding discrete-time process equation of equa-

tion 28 must be formulated as follows [3]: 

x (k+l) = t(k)x(k) + w(k) (30) 

where x(k) (nxl) process state vector 

t(k) (nxn) state transition matrix which describes the 

homogeneous trajectory of x(k) from k to k+l 

w(k) (nxl) Gaussian white noise sequence vector; the 

driven response at k+l due to presence of white 

noise over the interval from k to k+l 

The x,y,z and clock errors are uncorrelated and have the same 

transition matrix for the double integrator plant for a step-size ~t 

f1 ~t] 
t(k) = 19 ~ (31) 
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The total transition matrix will be block-diagonal in form and 

will be the null matrix except along the main diagonal which will con-

sist of four 2x2 matrices in the form of equation 31. 

Another parameter needed in the formulation of the random process 

being modelled is the Q matrix [3]. This quantity describes the 

covariance structure of the white sequence vector w(k). The defini-

tion of the Q(k) matrix is given as: 

-- {QO(k) E[w(k)wT(i)] 
for k=i 

for k~i 

where E[ ]: is the expected value operator. 

(32) 

Because the x,y,z and clock errors are uncorrelated, the total 

Q(k) matrix has the following block diagonal form (same as the transi-

tion matrix): 

Ql 0 0 0 

0 Q2 0 0 
Q(k) = (33) 

0 0 Q3 0 

0 0 0 Q4 

A. 
(llt)3 

A. 
(llt)2 

1 3 1 2 

Qi (k) = i 1,2,3 

(llt)2 
A. A. llt 

1 2 1 

and 
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The constants Al - AS represent the power spectral density ampli­

tudes of the driving terms fl(t) - fS(t). The process is completely 

defined (as far as the Kalman filter is concerned) with the parameters 

~(k) and Q(k). Now that the state is defined, the discrete Kalman 

filter measurement equation may be developed. 

2. Measurement equation 

Two different measurement formats are needed. The first is the 

usual Kalman filter measurement equation. The other is for the delayed 

state Kalman filter. The baseline measurements (four pseudo-ranges) 

and the velocity (Doppler) measurements can be made to fit the form of 

the usual measurement equation. The Doppler measurements which are 

treated correctly as the integral of Doppler shift will use the delayed 

state measurement form. 

The usual Kalman filter measurement equation has the following 

form [3]: 

z(k) = H(k)x(k) + v(k) (34) 

where z(k) = (mxl) measurement vector 
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H(k) = (mxn) matrix which gives the ideal connection between 

the current measurement and the current state 

v(k) = (mxl) white measurement noise sequence assumed to be 

uncorrelated with w(k), that is E[w(k)vT(l)] = 0 for 

all k and 1 

The covariance structure of vCk) is defined as: 

__ {ROCk) . E[v(k)vT(i) ] 
k=i 

(35) 

The baseline measurements z(k) are the pseudo-range measurements. 

The first four rows of the connection matrix H(k) will have the follow-

ing form: 

where 

o -cos6 (k). yp l. 
o -cos6 (k). zp l. 

o c 0] 

i=1,2,3,4 : direction cosines for each satellite 

(36) 

The velocity model is obtained by augmenting the baseline measure-

ment model with the four linearized Doppler measurements. If the 

linearized velocity model given in equation 22 is multiplied by the 

delta-range integration interval (in seconds), the units of the result-

ing equation will be cycles. The velocity measurement model will then 

have the same units as the delayed state model. Since the origin of 

the Doppler measurement is the difference of the phase required to 

track the received carrier over a small time interval, the units of 

the measurement should be cycles regardless of the measurement model 

that is used. The fifth through the eighth rows of the connection 
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matrix for the ith satellite are: 

where 

o -(~t/AO)coSe (k). 0 fO~t] zp 1. 

i 1,2,3,4 

AO wavelength of carrier 

(37) 

The form of the delayed state Kalman filter measurement equation 

is given as [3]: 

z(k) = H(k)x(k) + J(k)x(k-l) + v(k) (38) 

where J(k) = (mxn) matrix which gives the connection between the 

current measurement and the previous state vector 

(The other variables in equation 38 are defined above.) 

The connection matrices for the delayed state model will now be 

defined. (The development of these matrices is discussed further in 

Appendix A.) The first four measurements are the linearized pseudo-

ranges so that the first four rows of H(k) are the same as those 

defined in equation 36. The first four rows of J(k) will be zero. The 

last four rows of H(k) and J(k) are obtained from equation 14. The 

fifth through the eighth rows of H(k) and J(k) for the ith satellite 

are given by: 

H.(k) = [-(l/AO)cose (k). 0 -(l/AO)cose (k). 
1. xp 1. yp 1. 

o -(l/AO)cose (k). zp 1. 
0] (39) 
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J.(k) = [-(1/AO)cos6 (k-l). 
1 Xp 1 

o 

o -(1/AO)CoS6 (k-l). 0 fO 0] 
Zp 1 

(40) 

where i = 1,2,3,4 

The required Kalman filter modelling is complete when the parameters 

~(k), Q(k), H(k), J(k), and R(k) are defined. The power spectral 

density of the noise that drives the process equation and the covariance 

of the measurement noise are considered as given by the filter designer. 

These parameters must be chosen with care to fit the situation at hand. 

With these parameters, the designer can affect the resulting error 

covariance to achieve almost any range of accuracy during error covari-

ance analysis. Whether this corresponds to the real life situation is 

the important consideration. If empirical data from the actual system 

are not available, the designer must rely on intuition to determine 

reasonable parameters. 

c. Kalman Filter Recursive Equations 

At this point, it is appropriate to describe the recursive Kalman 

estimator. The update equation is used to calculate the best estimate 

of the current state by adding to the a priori estimate a weighted sum 

of the current measurement residuals. The update equation for the 

delayed state filter is given in equation 41. 

i(k) = i-(k) + K(k) [z(k) - H(k)i-(k) - J(k)i(k-l)] (41) 

where x(k) best estimate at t=k of x(k); the hat notation 
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denotes an estimated quantity, also known as the 

a posteriori estimate at t=k 

i- (k) 

K(k) 

best estimate of x(k) computed at previous step 

weighting matrix, also known as the gain 

The expression inside the brackets is the measurement residual. The 

vector z(k) is the input to the filter and the terms following it are 

the best estimate of what the measurement should be as determined by 

the measurement equation. The noise term is left out here since it is 

assumed to have a zero mean. 

The Kalman gain is the weighting matrix that minimizes the mean 

square estimation error. The estimation error is defined as the differ­

ence of the true state and the best a posteriori estimate of the state 

as shown in equation 42 below. 

e(k) = x(k) - x(k) (42) 

The error covariance matrix P(k) is defined as: 

P(k) (43) 

With modest effort, P(k) may be expanded (with appropriate substitutions) 

to yield the general error covariance expression for the delayed state 

Kalman filter which is given as [3]: 

P(k) = P-(k) - K(k) [H(k)P-(k) + J(k)P(k-l)~T(k-l)] 

_[P-(k)HT(k) + ~(k-l)P(k-l)JT(k)]KT(k) + K(k)L(k)KT(k) (44) 
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where 

L(k) = H(k)P-(k)HT(k) + R(k) + J(k)P(k-l)JT(k) + 

H(k)~(k-l)P(k-l)JT(k) + J(k)P(k-l)~T(k-l)HT(k) (45) 

The Kalman gains are found by taking the matrix derivative of equation 

44, setting it equal to the null matrix, and solving for the gain matrix 

which minimizes the elements along the major diagonal of P(k). The 

result is: 

K(k) (46) 

If the Kalman gain is substituted back into equation 44, the error 

covariance (only in the case where the optimal gains are used) simpli­

fies to: 

(47) 

To assimilate the current measurement with the update equation, 

the optimal gain and the a priori state estimate must be available. The 

Kalman gain depends on the a priori error covariance. The error co­

variance projection equation provides the a priori error covariance 

matrix to be used in the gain equation on the next step. The state 

projection equation uses the process equation without the noi.se term 

to estimate the state at the next step. The projection equations are: 

i- (k+l) t(k)x(k) 

(48) 

(49) 
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Equations 41 and 46-49 are the recursive equations that comprise 

the delayed state Kalman filter. Figure 6 shows the recursive nature 

of the filter. The input is the measurement stream z(k) and the initial 

conditions. The Kalman gain is computed using the a priori and previous 

error covariances. After the gains are found, the state and the error 

covariance are updated. These quantities are then projected ahead to 

be used in the next step. The output is the updated state estimate 

x(k) and the associated error covariance P(k). The filter is recursive 

in that it is not required to save the measurements, all the previous 

states, or any other intermediate calculations. This information is 

transferred through the a priori state estimate and error covariance 

matrices. The delayed state Kalman filter does require the updated 

error covariance and state estimate to be saved to become P(k-l) on the 

next step. This is not required in the usual Kalman filter. The usual 

Kalman filter equations may be obtained by letting J(k) equal the null 

matrix in the delayed state filter equations. The resulting recursive 

equations are given in Figure 7 [3]. 

D. Kalman Filter Error Analysis 

Notice that the measurement data have no effect on the determination 

of the error covariance. The Kalman filter loop may be executed without 

assimilating measurements if only the error covariance trajectory is 

desired. This provides the filter designer with an easy method to 

assess system accuracy as it is modelled. The recursive structure for 

calculating a sequence of error covariances is the same as the usual 
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Initial conditions, x-(k), i(k-1), and their 
error covariances P-(k) , P(k-1) 

Project state and 
error covariance with 
equations 48 and 49 

Compute gain 
with equation 46 

Update error 
covariance with 
equation 47 ~----

Figure 6. Delayed state Kalman filter loop 

Initial conditions i-(k) , P-(k) 

Compute gain 

Update state 
estimate with 
equation 41 

K(k) = P-(k)HT(k) [H(k)P-(k)HT(k) + R(k)]-l 

Project state and 
error covariance with 
equations 48 and 49 

Update the state 

x(k) = x-(k) + K(k) (z(k) - H(k)i-(k» 

Update error covariance 

P(k) = (I - K(k)H(k»P-(k) 

Figure 7. Usual Kalman filter loop 

Kalman filter loop (as in Figures 6 and 7) except that the state update 

calculation may be bypassed since this step has no effect on the error 

covariance calculation. 
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In this research, there is a need to compare the relative accuracy 

between the delayed state and the velocity measurement models. Since 

the velocity model is considered to be a fictitious model, the 

determination of the better of the models may be inconclusive if the 

comparison is made on the basis of which has the smallest state vari­

able mean square error. The method of comparison to be used in this 

research is suboptimal gain substitution. This method allows the 

filter designer to assess the relative degradation in system accuracy 

when an approximate measurement model is used instead of the true 

measurement model. The Kalman gains determined with the approximation 

model are used as the gains in what the designer believes to be the 

truth model. The general error covariance update expression must be 

used since the substituted gains will not be the Kalman gains for the 

truth model. The degree of suboptimallity of the approximate model 

may be found by noting the increase in the elements along the main 

diagonal of the error covariance matrix. The process required to 

perform the suboptimal error analysis is shown in Figure 8. Both 

filters are run in parallel except the gains for the truth model are 

obtained from the approximate model. 
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III. RESULTS 

A. Specification of Filter Parameters 

In order to implement the Kalman filter equations, the GPS satel­

lite and receiver positions must be simulated so that the time varying 

measurement connection matrices may be "found at each time step. A 

typical GPS satellite constellation was chosen using the orbital 

information shown in Figure 1 [91. If the vehicle starting position 

is chosen in the southwest United States near California (250 degrees 

east longitude, 30 degrees north latitude) at a certain time, 

satellites 5, 7, 10, and 15 should remain visible in this area enough 

time for the Kalman filter error covariance to reach a steady state 

condition if the initial error covariance is started out as the zero 

matrix (implies a perfect initial estimate of the state vector). Since 

the satellite positions are always assumed as given during normal 

tracking of the satellites, there is no loss in generality in assuming 

a circular one-half day orbit at the given angle of inclination and 

position in orbit. Table 1 gives the necessary angles to specify the 

initial satellite positions. (See Appendix B for further explanation.) 

The satellite and vehicle coordinates can be transferred into an earth 

centered, earth fiKed frame of reference (ECEF). To put some dynamics 

into the problem, the vehicle is considered to be moving in an eastward 

direction at constant velocity and constant altitude and latitude. The 

velocity was chosen to be approximately 1700 miles per hour. This 

corresponds to an angular velocity which is half as fast as the 
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satellite angular velocity. (This speed was chosen somewhat arbitrarily 

but was made large enough to allow for a fair amount of change in the 

direction cosines over a time span of a few minutes.) For each 

satellite, it is a routine matter to generate the direction cosines for 

a given time. These terms will be used to load the measurement connec­

tion matrices. 

Tabie 1. Satellite position angles (degrees) 

Satellite S y 

5 60 55 160 

7 120 55 80 

10 180 55 120 

15 240 55 40 

The parameters ~(k) and Q(k) have been developed for the given 

state model in terms of the measurement interval (~t) and the process 

noise power spectral densities. Different values for ~t will be used 

to compare the two measurement models. The smaller the time interval 

becomes, the better the velocity model should approximate the delayed 

state model. The comparison will be made for time intervals of one 

second and one-tenth of a second. The power spectral densities are 

chosen so that the amount of noise that enters the system (over the 

sampling interval) causes a reasonable amount of uncertainty in the 

state variables. For the x, y, and z errors, the power spectral 
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densities were chosen to be one hundred with units of meters squared 

per seconds cubed. After one second, this amount of noise leads to a 

RMS velocity error of ten meters per second and a RMS position error 

of approximately six meters. The power spectral densities for the 

clock model are chosen to correspond to a "poor" clock [10]. The units 

of hO are in seconds and the units of h_Z are in Hertz. This means 

that results obtained will not be dependent on a highly stable local 

clock. The power spectral densities for the five white noise inputs 

are given below: 

Al AZ = A3 = 100 (mZ /s3) 

A4 hO/Z where hO 
-ZO = = 9.43xlO s 

AS 
Z 

where h_Z 3.8OxlO-21 Hz = Z(n) h_Z = 

The R matrix elements correspond to the measurement noise covari-

ances. It is assumed that the measurement noise associated with each 

of the four pseudo-range measurements is the same and has a RMS value 

of fifty meters. Measurement uncertainties due to satellite clock 

errors, ionospheric refraction delays, Costas loop errors and other 

unmodelled errors are all lumped into this quantity. It is common for 

phase lock loops to stay locked onto a received signal to within much 

less than a cycle. If a one cycle RMS measurement error was assumed, 

it would be possible to keep the velocity errors on the order of two-

tenths of a meter per second (corresponds to one light wavelength over 

a one second interval). This type of accuracy seems a bit unreasonable, 



www.manaraa.com

41 

though.- A more realistic measurement error would include the effects 

of theunmodelled errors mentioned above. If the measurement error for 

the Doppler count measurement is taken as ten cycles, this will 

correspond to an RMS velocity error of about two meters per second. 

The measurement error variance used for the Doppler shift of each 

satellite signal is one hundred cycles squared for a sampling interval 

of one second. The R matrix for the one second measurement interval 

is given as: 

2500 0 0 0 0 0 0 0 

0 2500 0 0 0 0 0 0 

0 0 2500 0 0 0 0 0 

0 0 0 2500 0 0 0 0 
RW = (50) 

0 0 0 0 100 0 0 0 

0 0 0 0 0 100 0 0 

0 0 0 0 0 0 100 0 

0 0 0 0 0 0 0 100 

When the sampling interval is changed to one-tenth of a second, 

the measurement noise variance for the Doppler measurements is changed 

to 10000 and the pseudo-range measurement noise variance is left 

unchanged. All the Kalman filter parameters (H,J,~,Q,R) are now 

defined. 
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B. Program Results 

Computer programs were developed to determine the steady state 

error covariance for the baseline, delayed state and velocity models. 

The baseline program uses only the pseudo-range measurements and is 

called ERRANI (error analysis one). The delayed state and velocity 

model programs are called ERRAN2 and ERRAN3, respectively. The program 

which performs the gain substitution from the velocity model to the 

delayed state model is called ERRAN4. Each of the programs contains 

the same procedures for generating direction cosines. Matrix operations 

are all performed with the same matrix multiply, transpose and inverse 

procedures and were checked extensively with a test program before 

being inserted into each of the four programs. As a check on the 

delayed state and velocity model programs, the measurement noise vari­

ance associated with the Doppler measurements was made large to make 

sure that the resulting error covariance "falls back" to the profile 

determined with the baseline model. This tells the Kalman filter to 

give little weight to the Doppler measurements. These tests were 

successful. 

The square roots of the elements along the main diagonal of the 

error covariance matrix are the standard deviations of the state vari­

ables which represent the system errors. The standard deviations 

of the position and clock offset errors (states 1, 3, 5, and 7) for 

the baseline model and a one second measurement interval are given in 

Figure 9. The velocity errors and fractional frequency error profiles 

(states 2, 4, 6 and 8) are given in Figure 10. The standard deviations 
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of the clock offset and fractional frequency errors are mUltiplied by 

the speed of light to ob~ain the corresponding errors in position and 

velocity units, respectively. The initial error covariance was the 

null matrix. The resulting state standard deviation profiles start out 

at the origin, go through a transient period, and then settle to "near" 

steady state values. 

The Kalman filters for the delayed state model, the velocity model 

and the delayed state model with the gains from the velocity model were 

each executed under the same initial conditions and the same noise 

statistics. The profiles of the standard deviation of a particular 

state variable from each of the three models are plotted together in 

Figures 11-20. The sampling interval for these plots is one second. 

For the position error states, the delayed state model had the smallest 

standard deviation, followed by the velocity model. The delayed state 

model with the suboptimal gains has the largest standard deviation. 

Notice that this ordering is maintained throughout the complete 

trajectory. For the velocity error states, the velocity model pre­

dicted the smallest standard deviation followed by the delayed state 

model. The delayed state model with the suboptimal gains estimated the 

largest standard deviation of the velocity error states. 

The difference in the profiles for the clock offset and fractional 

frequency errors determined from the three programs was too close to 

be observed in Figures 17 and 19. Thus, the difference between the two 

suboptimal trajectories and the optimal trajectory was plotted and is 

shown in Figures 18 and 20. The difference was taken as the suboptimal 
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less the optimal trajectory. The velocity model RMS clock errors vary 

about the optimal ones, as shown by the difference profile changing 

from positive to negative quantities. The RMS error trajectories 

calculated with the delayed state model using the suboptimal gains 

always remains greater than the optimal trajectories. In this case, 

the difference is small, but it always remains positive. The important 

observation is that the profiles of the RMS errors from the delayed 

state model using the suboptimal gains are always larger than the 

profiles obtained with the optimal gains in the delayed state filter. 

Of course, this result is expected because by definition, the Kalman 

gains are the gains which minimize the elements along the main diagonal 

of the error covariance matrix. Table 2 gives a summary of the steady 

state RMS error values for a one second sampling interval. 

Table 2. Semi-steady state RMS errors 

State Baseline Delayed Velocity Suboptimal state model 

x pos. 45m 15m 18m 21m 

x vel. l8m/s 6m/s 2.5m/s 6.5m/s 

y pOSe 32m 8.5m 12m 16m 

y ve1. l6m/s 5.8m 1.8m/s 6.2m/s 

z pOSe 42m 27m 29m 31m 

z vel. l5m/s 5.6m/s 1.4m/s 6.Om/s 

Clock offset 1m/s 22m 22m 22m 

Clock 1m/s .56m/s .56m/s . 56m/ s 
fractional 
frequency 
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The point to be made from all this is that the velocity model is 

a physically fictitious model, but mathematically it is a reasonable 

approximation to the delayed state model when the time interval between 

the phase difference measurements is small. The fact that the standard 

deviations of the velocity error states determined with the velocity 

model are smaller than those obtained with the delayed state model does 

not me~n that the velocity model is superior. Rather, it is a result 

of a very optimistic assumption made in the very beginning of the deriva­

tion of the velocity model. The assumption that the Doppler shift is 

proportional to an instantaneous measurement of relative velocity is 

not physically reasonable. 

The time interval between measurements was then decreased to one­

tenth of a second to see if the velocity model would become a better 

approximation of the delayed state model. The standard deviation pro­

files determined with the velocity model, the delayed state model and 

the delayed state model with the suboptimal gains for each of the state 

variables are shown in Figures 21-36. Since the time interval was 

decreased, fewer data are averaged and there should be more uncertainty 

associated with the Doppler measurement. This explains the increase in 

the R matrix elements, which is described above. The change in the time 

interval was also accounted for in the state transition matrix, the Q 

matrix and the measurement connection matrices (in the velocity model). 

The power spectral densities of the process noise remain the same, but 

the correct amount of uncertainty that enters the system over this 

time interval due to the process noise is taken care of in the Q matrix. 



www.manaraa.com

o 
o . 
In ... 

o 
-0 

52 

TICIN ERRORS 
DELRYED-STRTE 
VELOC I TY -HODEL 
SUB-oPTIHRL 

d~--------~--------''--------~-------Ir---------r----------
0.00 5. ·00 10.00 

SEC~NOS 
15.00 20.00 25.00 

Figure 21. x position error profiles for ~t = .ls 

7 
o -xo 

X POSITION ERRORS 
SUB-OPTIHAL 
VELOC I TY -HODEL 

-o~ _______________________________________________________________ ~ 

d 
E 

. 
..Jo 
a:~ 
~ . 
• -8 
l­
n. 
10 

~~ 
c· ct:1' 
u.. 
u.. 
u..o 
-", 

CJ~~ ______ ~~ ______ '-______ ~ ________ r-______ -r ______ __ 

0.00 20.00 25.00 

Figure 22. Differences from the optimal x position error profile 



www.manaraa.com

53 

X VELOCITY ERRORS 
DELAYED-STATE ~ 

In 
"­e 

o 
o 
N -
o 
o 
cD 

o 
-0 

SUB -OPT I HAL 

ci~------~~--~--~------~--------r-------~--------
0.00 5.00 10.00 

SECONDS 
15.00 20.00 25.00 

Figure 23. x velocity error profiles for ~t = .ls 

In 
"­e 

o 
o 

l-

o 
.0 .. 

.--Cf­
CL.. 
10 

L:0 
c~ 
CI:N 
u.. .-. 
u.. 
u..o 
...... 0 

CleO 

x VELOCITY ERRORS 
SUB-CIPTIHAL 
VELOCITY -HClDEl 

-...... 

.~------~_I~------~I--------.-.~-------_r-~-------I~-------
0.00 5.00 10.00 15.00 20.00 25.00 

SECONDS 
Figure 24. Differences from the optimal x velocity error profile 



www.manaraa.com

o 
o 

~-

o 
\1\0 
'- :­Q)CD 

..... 
Q) 

E 
o· 
.0 

a:..;~ 
::f: 
c.!). 
1-4 :g II 

54 

Y POSITION ERRORS 
DELAYED-STATE 
VELOCITY-HODEL 
SUB-OPTIHAL 

-

d~-------,_,--------.~~-------r-'-------~I------~--------
0.00 5.00 10.00 15.00 20.00 25.00 

SECClNDS 

Figure 25. y position error profiles for 6t .ls 

~ 
o -­xo 
.... 0 

Y POSITION ERRORS 
SUB-OPTIHAL 
VELOCI TY -HODEL 

d~~'---------------------------------------------------~~ 

• 
IJ.. 
1J..

0 
1-4", 

CJ • 
i~------~)~------~.I--------~I--------r-l-------~I-------

0.00 5.00 10.00 15.00 20.00 25.00 
SEC~NDS 

Figure 26. Differences from the optimal y position error profile 



www.manaraa.com

o 
o 
N -
o 
o 
cD 

In 
........ 
e 

o 
-0 

55 

Y VELOCITY ERRORS 
DELAYED-STATE 
VELOCITY -HODEL 

d~------~~------~------~--------r-------~--------
0.00 5.00 10.00 

SECCINDS 
15.00 20.00 25.00 

Figure 27. y velocity error profiles for ~t = .ls 

rt 
o 
_0 
xo 

Y VELOCITY ERRORS 
SUB-OPTIHAl 
VElOC I TY -HODEL 

~9~--------------------------------------------------~ 
In 

....... 
e 

o 
.IXJ . 

"':9 
a... 
o 

:l:o 
Ow a:. 
u. • 

• u. 
U.o - ... c. 
~~------~~------'-------~--------r--------.--------

0.00 5.00 10.00 
SECCINDS 

15.00 20.00 25.00 

Figure 28. Differences from the optimal y velocity error profile 



www.manaraa.com

o 
o 
N -

o 
...... 0 

56 

Z POSITION ERRORS 
DELAYED-ST 
V -HODEL 

_-----~----- SUB-OPTIMAL 

d~----------,------------.-----------r------------r----------~-----------
9·00 5.00 10.00 

SECONDS 
15.00 20.00 25.00 

Figure 29. z position error profiles for ~t = .ls 

~ 
o -xo 
-0 

d 

e 
c ..... . . 

..... 9 
a.... 
.0 

. 
u.. 
u..o 
-('II 
o. 

Z POSITION ERRORS 
SUB -OPT I MAL 
VELCIC I Tl' -HODEL 

~-r---~---~r----------,----------~------------r-----------------------
0.00 5.00 10.00 

SECONDS 
15.00 25.00 20.00 

Figure 30. Differences from the optimal z position error profile 



www.manaraa.com

III 

" e 

o 
o 

~-... 

o 
o 
czj-

'0 
.0 

a:~­
:r: 
t!l 
....... 
(f) 

o 
_0' 

57 

I VElCCITY ERRCRS 
DELAYED-STATE 
VElCC I TY -MODEL 
SUB-OPTIMAL 

-

d:~----------J'-----------Ir----------~I---------~_Ir-------T--------
O. 00 5. 00 10. 00 15. 00 20. 00 2

1
5. 00 

SECClNDS 
Figure 31. z velocity error profiles for 6t = .ls 

rr 
o 
_0 
xc 

Z VELOCITY ERRORS 
SUB-OPTIMAL' 
VELOC I TY -HODEL 

- . 
9~~-----------------------------------------------------------------------~-~~ 

III 

" e 
c 

.. CD .. 
..... 9-
a.. 
o 

. 
u... 
u...o ....... .." 

C •. ~-------=;=====~=======r======~====~======~~ ~~ J I I J 1 
0.00 5.00 10.00 15.00 20.00 25.00 

SECCINDS 
Figure 32. Differences from the optimal z velocity error profile 



www.manaraa.com

o 
o 
cO 

0, 
11\0 
L • 
4)"'" .... 
4) 

e 

o 
-0 

58 

CLaCK OFFSET ERRORS 
DELAYED-STATE 
VELOC I TY -MODEL 
SUB-OPTIMRL 

o·~~~--~r-------'--------T--------~------~--------
0.00 5.00 10.00 15.00 20.00 25.00 

SECClNDS 

Figure 33. Clock offset error profiles for ~t = .ls 

CLOCK OFFSET ERRORS 
.... SUB-OPTIHAL !!l 
0 VELOCITY-HODEL ~ -xo -,. 

0 
e . 

....J 
a: 
~o 
_N 
1-0 
a... 
D 

~ 
Do 
a:o 
l1.. • 

0 . 
l1.. 
l1.. 
_0 

CI~ 
0 
I 

0.00 5.00 10.00 
SECClNDS 

15.00 20.00 25.00 

Figure 34. Differences from the optimal offset error profile 



www.manaraa.com

III 
....... 
e 

o 
co 
d 

o • 
d 

o 
-0 

59 

CLOCK fREQ. ERRORS 
DELAYED-STATE ~ 
VELOCITY-HODEL ~. 
SUB-OPTIHAl m 

d~------~--------T-------~--------~------~---------
O. 00 5. 00 10. 00 

SECONDS 
15.00 20.00 25.00 

Figure 35. Fractional frequency error profiles for ~t .ls 

'i' 
o -xo 
-CD 

d 
til 

....... 
e 

o 

CLOCK fREC. EAADAS 
SUB-OPTIHAl m 
VELDCITY-HDDEL ~ 

.0 
~d~~~~-----------------------------~ '--=~----/ 
a.. 
o 

• 
lL. 
lL. 
_0 

CI~ 
i~------~~------'-------~---------r--------~---------

0.00 5.00 10.00 
SECONDS 

15.00 20.00 25.00 

Figure 36. Differences from the optimal fractional frequency error 
profile 



www.manaraa.com

60 

The results are similar to those obtained when the time interval was 

one second. The standard deviations of the state variables obtained with 

the suboptimal gains are always slightly larger than those found with 

the optimal gains in the delayed state model. However, the difference 

is much less in this case. Once again, the difference in the standard 

deviation profiles from each of the three programs is too small to be 

observed from the plot. (This is because the plot scale is too large 

to show the difference.) For each of the state variables, the differ­

ence between the optimal profile and the other two profiles was plotted. 

Clearly, the difference between the velocity and the delayed state 

models has diminished as is expected. In all the velocity states, the 

velocity model predicted a smaller standard deviation than did the 

delayed state model and is shown by the difference between the two as 

being negative. This result is explained with the reasoning that the 

velocity model is a fictitious model and predicts overly optimistic 

statistics. 

In all the clock error trajectories, it appears as though the 

standard deviations have not reached a steady state condition. However, 

the difference between the suboptimal and optimal trajectories always 

remains positive and there is no indication of any filter divergence 

problems. The difference was very-small and quite erratic, and the 

plotting routine performed some smoothing to obtain the plots shown in 

Figures 34 and 36. This smoothing was not needed for all the other 

plots, though. 

It should be mentioned that all the trajectories are obtained 
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from discrete type data and that interpolation was used to get the 

continuous plots for Figures 9-36. The point to point interpolation 

was performed by the plotting routine. 
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IV. CONCLUSION 

It has been shown that the delayed state Kalman filter will allow 

for optimal processing of GPS carrier Doppler shift measurements. The 

need for the delayed state Kalman filter arises from the fact that the 

Doppler count measurement made with the GPS receiver is the integral of 

the Doppler shift over the interval that the phase difference measure­

ment is made. When this measurement is linearized about a nominal 

trajectory, the Kalman filter measurement is related to present as well 

as previous (delayed) system errors. The presence of the delayed state 

in the measurement equation cannot be accommodated with the usual Kalman 

filter measurement equation. To get around this problem, another term 

is added onto the Kalman filter measurement equation which accounts for 

the connection of the current measurement to the previous state. The 

result is the delayed state Kalman filter and the corresponding 

recursive equations. 

The error covariance of the random process being estimated (in this 

case the system errors) with the Kalman filter may be computed without 

actual measurement data. This provides the filter designer with a 

powerful indicator of the range of accuracy to be expected (for the 

system as it is modelled) without having to perform time consuming 

Monte Carlo type simulations. If less than optimal gains are cycled 

through the Kalman filter, the resulting error variances should be 

greater than those obtained with the Kalman gains. Thus, gains from a 

model considered to be an approximation to the truth model can be 
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cycled through the truth model's error covariance update equation to 

determine the relative accuracy of the approximate model. This method 

is known as suboptimal error analysis. It is also referred to in this 

research as suboptimal gain substitution. 

Suboptimal error analysis techniques were used to compare the true 

measurement model (where the Doppler count is the integral of the 

Doppler shift) to a model that considers the Doppler count measurement 

as proportional to an instantaneous frequency measurement. The latter 

type of measurement does not make physical sense even though mathemati­

cally this model can be shown to be an approximation to the true model 

in the limit as the time over which the phase difference measurement 

is performed tends toward zero. The results obtained for the relative 

difference of the system RMS error profile between the optimal and sub­

optimal filters were not larger than a few meters in the position 

. states for an integration interval of one second. However, this is 

enough difference to show that delayed state model developed, and the 

use of the delayed state Kalman filter to process the Doppler count 

measurements, will be optimal with respect to other approximate models. 

(Some degree of suboptimallity enters the problem by linearizing the 

measurement equation since the Kalman filter demands a linear measure­

ment equation.) The really important difference between the delayed 

state model (which gives the true RMS error) and the fictitious velocity 

model shows up mainly in the velocity estimation errors. In this case, 

the velocity model predicts unduly optimistic results. This gives an 

indication of the crudeness of the velocity model as an approximation 
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to the delayed state model. The degree of increased numerical com­

plexity in the delayed state Kalman filter recursive equations is quite 

manageable and worthwhile in the sense that the real life improvement 

in using this model may be significant. 

This research was not intended to determine the absolute accuracy 

of a typical state-of-the-art aided INS. A rather crude inertial system 

was modelled with the choices of the white noise power spectral densi­

ties that drive the process state equation. The amplitudes that were 

used led to INS velocity errors of ten meters per second and INS posi­

tion errors of six meters over a one second sampling interval. Clearly, 

a state-of-the-art inertial system would not be in error to this extent 

over such an interval. Also, the measurement error associated with the 

pseudo-range and delta-range measurements were chosen to be large with 

respect to current technology. A common pseudo-range measurement error 

might be twenty meters. This is more than a factor of two smaller 

than the fifty meter error assumed for this research. The large 

measurement and process errors were used simply to help demonstrate the 

difference between the two different models. 

If the absolute accuracy of an aided INS using the best available 

inertial system and GPS receiver was desired, models could have been 

developed which are much more complicated but could account for specific 

aspects of a real aided INS. For example, the statistics of the actual 

measurement noise (obtained using a specific GPS receiver) might be 

empirically determined to be a colored noise process rather than purely 

white. Also, the errors of a specific accelerometer or gyro could be 
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modelled to fit empirical data and would lead to a different process 

model than pure double integration. The corresponding Kalman filter 

states would be augmented to account for these specifics. In this 

case, it would be possible to compare absolute accuracy between the 

delayed state and velocity models when suboptimal error covariance 

analysis is performed. This type of analysis is not really needed if 

only the relative accuracy is desired. Even though the model used in 

this research is rather general, it is justified because it accounts 

for the dominant system errors and is fairly representative of a typi­

cal aided INS. 
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VII. APPENDIX A. APPROXIMATION OF THE 

DELAYED STATE MODEL 

The velocity model assumes a physically unrealistic measurement 

situation, but this model may be shown mathematically to be an approxi-

mation to the delayed state model. The approximation becomes valid as 

the time between the phase measurements, used to measure Doppler count, 

tend towards zero. To show this, themean value theorem of calculus will 

be invoked. The theorem states that if a function f(x) is continuous 

on the closed interval [a,b] and if f(x) is differentiable on the open 

interval (a,b), then there is a value of the independent variable c, 

contained in (a,b), such that: 

. 
f(c) = [f(b) - f(a)]/(b-a) (51) 

Let the time between t 1 and t be ~t. Let cl be contained in n- n 

the interval t n_l to tn - ~t/2. Then, using 51: 

Let c 2 be contained in the interval tn - ~t/2 to tn. Also, by 

51 the following is true: 

. 
f(t ) = f(t - ~t/2) + ~t/2 f(c 2) 

n n (53) 

Since the cosine function satisfies the continuity and differenti-

ability criteria stated above, the mean value theorem can be invoked to 

write: 
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where ~cosS(a) : time differential change in cosS(t) at t=a 

Applying equations 54 and 55 to the delayed state measure-

ment equation 14 and collecting terms, the result is: 

z - h(t ) = -fOld -cosS (t - t/2){~x(t ) - ~x(t l)} n xp n n n-

- cos6 (t - t/2){~y(t ) - ~y(tn_l)} yp n n 

- cos6 (t - t/2){~z(t ) - ~z(tn_l)} zp n n 

+ c{~T(t ) - ~T(t l)}- ~t/2{~cos6 (cl)~x(t) n n- xp n 

+ ~cos6 (c2)~x(t l)} - ~t/2{~cos6 (cl)~y(t) xp n- yp n 

+ ~cos6 (c2)~y(t I)} - ~t/2{~cos6 (cl)~z(t) yp n- zp n 

+ ~cosS (c2)~z(t I)}] + v(t) zp n-
(56) 

By dividing both sides of equation 56 by ~t where ~t gets very 

small, and by noting that the last three terms inside the brackets will 

be second order differences, and thus can be ignored as ~t tends toward 

zero, equation 56 becomes: 

where 

z - h(t ) = -fO/c[-cosS (t )~x(t ) - cosS (t )~y(t) n xp n n yp n 

- cos6 (t )~z(t ) + c~T(t )] + v(t) (57) zp n n n 

~(tn) = [~(t) - ~x(tn_l)]/~t as ~t tends to zero and 

similarly for ~y, ~z, and ~T. 

Here, it has been shown that the velocity model is a reasonable 
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mathematical approximation to the delayed state model if the phase 

difference measurement interval is very small. 
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VIII. APPENDIX B. DERIVATION OF SATELLITE 

DIRECTION COSINES 

The following is the derivation of the direction cosines which are 

used to load the time varying measurement equation connection matrices. 

The procedure used here assumes a spherical satellite orbit so this 

method is only good for a computer simulation type study. In a real 

GPS receiver, the satellite ephemeris information is decoded to provide 

satellite positioning data in a given frame. Still, the general 

procedure is somewhat similar for producing the direction cosines. The 

satellite and vehicle coordinates must be brought into the same 

coordinate frame so that the vector from the vehicle to the satellite 

may be found. When the components of this vector are known, the direc-

tion cosines are easily obtained. Any suitable coordinate frame would 

be acceptable, but here it has been chosen to bring the satellite 

coordinates into a locally level earth fixed frame (x,y,z) where x is 

north, y is west and z is radially upward. The vehicle coordinates 

in this earth centered inertial frame of reference are: 

where i 
n 

R =01 +01 +Ri v x y v z 

unit vector in the n direction 

To bring the satellite position vector into this frame, the 

(58) 

satellite will initially be defined in its own earth centered inertial 

frame (U,V,W). The satellite position is then defined as: 

(59) 
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The satellite vector may be brought into an earth centered earth 

fixed (ECEF) coordinate frame (X,Y,Z) under the transformation: 

R s X,Y,Z 
= T R 

1 sU,V,W 
(60) 

The Tl matrix is a transformation matrix which contains the direc­

tion cosines between the X,Y,Z unit vectors and the U,V,W unit vectors. 

By taking advantage of the sparsity of the vector in equation 59, 

R becomes: 
s 

where R 

R 

R 

Sx 

sY 

Sz 

R 

R s 

= R s 

=R 
s 

s X,Y,Z 

cos8XW 

cos8yw 

cos8
ZW 

where 8 ab refers to the angle between the a and b directions. 

(61) 

Using Figure 37 and performing a series of coordinate rotations 

x 

Figur~ 37. Transformation to ECEF coordinates 
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through the angles a, e, and y, and by using the spherical law of 

cosines, it is possible to find each of the components of equation 

61. The angle a corresponds to angle of the ascending node which 

is the longitude where the satellite orbit crosses the equator. The 

angle e corresponds to the inclination angle which is the angle between 

the orbit and the equator. The angle y gives the angle of the 

satellite along its orbit with respect to the ascending node. 

The spherical law of cosines is given as (using Figure 38): 

cos a = cos b cos c + sin b sin c cos A (62) 

c 

A B 
c 

Figure 38. Spherical angles 

Using Figure 37, the following direction cosines are found: 

x 

cos8XW = cosy cos 90 + siny sin 90 cos (90-e) 

= siny sine (63) 

W 
Y W cos8yw = cosy cos(90+a) + siny sin(90+a)cos(180-e) 

~y 
y 90+a z' 

= -cosy sina - siny cosa cose (64) 
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W cos6 ZW = cosa cosy + sina siny cos(180-S) 

= cosa cosy sina siny cosS (65) 

The next step is to convert the satellite coordinates into the 

vehicle x,y,z coordinate frame. An arbitrary point in the ECEF frame 

is chosen and a series of coordinate rotations are performed to define 

the x,y,z frame. The angle ~ corresponds to the vehicle east longitude 

and the angle 6 corresponds to the vehicle north latitude. The new 

transformation is defined as: 

where 

R 
s x,y,z 

cos6XX 

T2 = cos6yX 

cos6 zX 

The rotations are described in terms of the angles ~ and 6 as 

shown in Figure 39. 

Yt-::~---~-f-=:-t--"'" -y 

Figure 39. Vehicle coordinates 
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By inspection: 

z 

z 

75 

cosexX = cose 

cosexY = cose cos90 + sine sin90 cos(90-~) 

= sine sin~ 

cosexZ = cose cos90 + sinS sin90 cos(90+~) 

= -sine sin~ 

coseyX = cos90 = 0 

COseyy = cos~ 

coseyZ = cos(90-~) = sin~ 

cose zX = cos(90-e) = sinS 

cose zy = cos~ cos90 + sin~ sin90 cos(180-e) 

= -sin~ cosS 

cose zZ = cos90 cos(90-~) + sin90 sin(90-~)cose 

= cos<j> cose 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

Using equations 67-75, the transformation matrix of equation 66 

is given as: 
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cose sine sin<jl -sine cos<jl 

o cos<jl sin<jl 

sine -cose sin<jl cose cos 

The satellite vector in the x,y,z frame is given by: 

R 
s 

A 

= R i 
s x 
x 

The distance from the vehicle to the satellite is: 

The direction cosines are given as: 

Rs x 
cose = -p-' xp 

Rs 
cose = -.:::L 

yp p' 

(Rs - R ) z v 
cose = ----------zp p 

(76) 

(77) 

Given the satellite's ascending node, inclination, and orbit angles 

and the vehicle longitude, latitude, and altitude, it is possible to 

generate the desired direction cosines with equation 77 by perform-

ing the two satellite coordinate transformations given by equations 

60 and 66. 
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